99 research outputs found

    Off-center coherent-state representation and an application to semiclassics

    Full text link
    By using the overcompleteness of coherent states we find an alternative form of the unit operator for which the ket and the bra appearing under the integration sign do not refer to the same phase-space point. This defines a new quantum representation in terms of Bargmann functions, whose basic features are presented. A continuous family of secondary reproducing kernels for the Bargmann functions is obtained, showing that this quantity is not necessarily unique for representations based on overcomplete sets. We illustrate the applicability of the presented results by deriving a semiclassical expression for the Feynman propagator that generalizes the well-known van Vleck formula and seems to point a way to cope with long-standing problems in semiclassical propagation of localized states

    The brittle-ductile transition in active volcanoes

    Get PDF
    Abstract Contrasting deformation mechanisms precede volcanic eruptions and control precursory signals. Density increase and high uplifts consistent with magma intrusion and pressurization are in contrast with dilatant responses and reduced surface uplifts observed before eruptions. We investigate the impact that the rheology of rocks constituting the volcanic edifice has on the deformation mechanisms preceding eruptions. We propose a model for the pressure and temperature dependent brittle-ductile transition through which we build a strength profile of the shallow crust in two idealized volcanic settings (igneous and sedimentary basement). We have performed finite element analyses in coupled thermo-hydro-mechanical conditions to investigate the influence of static diking on the local brittle-ductile transition. Our results show that in active volcanoes: (i) dilatancy is an appropriate indicator for the brittle-ductile transition; (ii) the predicted depth of the brittle-ductile transition agrees with the observed attenuated seismicity; (iii) seismicity associated with diking is likely to be affected by ductile deformation mode caused by the local temperature increase; (iv) if failure occurs within the edifice, it is likely to be brittle-dilatant with strength and stiffness reduction that blocks stress transfers within the volcanic edifice, ultimately damping surface uplifts

    On Bargmann Representations of Wigner Function

    Full text link
    By using the localized character of canonical coherent states, we give a straightforward derivation of the Bargmann integral representation of Wigner function (W). A non-integral representation is presented in terms of a quadratic form V*FV, where F is a self-adjoint matrix whose entries are tabulated functions and V is a vector depending in a simple recursive way on the derivatives of the Bargmann function. Such a representation may be of use in numerical computations. We discuss a relation involving the geometry of Wigner function and the spacial uncertainty of the coherent state basis we use to represent it.Comment: accepted for publication in J. Phys. A: Math. and Theo

    Analytical approach to viscous fingering in a cylindrical Hele-Shaw cell

    Full text link
    We report analytical results for the development of the viscous fingering instability in a cylindrical Hele-Shaw cell of radius a and thickness b. We derive a generalized version of Darcy's law in such cylindrical background, and find it recovers the usual Darcy's law for flow in flat, rectangular cells, with corrections of higher order in b/a. We focus our interest on the influence of cell's radius of curvature on the instability characteristics. Linear and slightly nonlinear flow regimes are studied through a mode-coupling analysis. Our analytical results reveal that linear growth rates and finger competition are inhibited for increasingly larger radius of curvature. The absence of tip-splitting events in cylindrical cells is also discussed.Comment: 14 pages, 3 ps figures, Revte

    Survey on the Bell nonlocality of a pair of entangled qudits

    Get PDF
    The question of how Bell nonlocality behaves in bipartite systems of higher dimensions is addressed. By employing the probability of violation of local realism under random measurements as the figure of merit, we investigate the nonlocality of entangled qudits with dimensions ranging from d=2d=2 to d=7d=7. We proceed in two complementary directions. First, we study the specific Bell scenario defined by the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality. Second, we consider the nonlocality of the same states under a more general perspective, by directly addressing the space of joint probabilities (computing the frequencies of behaviours outside the local polytope). In both approaches we find that the nonlocality decreases as the dimension dd grows, but in quite distinct ways. While the drop in the probability of violation is exponential in the CGLMP scenario, it presents, at most, a linear decay in the space of behaviours. Furthermore, in both cases the states that produce maximal numeric violations in the CGLMP inequality present low probabilities of violation in comparison with maximally entangled states, so, no anomaly is observed. Finally, the nonlocality of states with non-maximal Schmidt rank is investigated.Comment: 8 pages, 6 figures, 2 table

    Global physics-based database of injection-induced seismicity

    Get PDF
    Fluid injection into geological formations for energy resource development frequently induces (micro)seismicity. Moderate- to large-magnitude induced earthquakes may cause injuries and/or economic loss, with the consequence of jeopardizing the operation and future development of these geo-energy projects. To achieve an improved understanding of the mechanisms of induced seismicity, develop forecasting tools and manage the associated risks, it is necessary to carefully examine seismic data from reported cases of induced seismicity and the parameters controlling them. However, these data are challenging to gather together and are time-consuming to collate as they come from different disciplines and sources. Here, we present a publicly available, multi-physical database of injection-induced seismicity (Kivi et al., 2022a; https://doi.org/10.20350/digitalCSIC/14813), sourced from an extensive review of published documents. Currently, it contains 158 datasets of induced seismicity caused by various subsurface energy-related applications worldwide. Each dataset covers a wide range of variables, delineating general site information, host rock properties, in situ geologic and tectonic conditions, fault characteristics, conducted field operations, and recorded seismic activities. We publish the database in flat-file formats (i.e., .xls and .csv tables) to facilitate its dissemination and utilization by geoscientists while keeping it directly readable by computer codes for convenient data manipulation. The multi-disciplinary content of this database adds unique value to databases focusing only on seismicity data. In particular, the collected data aim at facilitating the understanding of the spatiotemporal occurrence of induced earthquakes, the diagnosis of potential triggering mechanisms, and the development of scaling relations of maximum possible earthquake magnitudes and operational parameters. The database will boost research in seismic hazard forecasting and mitigation, paving the way for increasing contributions of geo-energy resources to meeting net-zero carbon emissions.</p

    A conjugate for the Bargmann representation

    Full text link
    In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators a^\hat{a}^\dagger and a^\hat{a} play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of a^\hat{a}^\dagger and a^\hat{a} are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented.Comment: 15 page

    The quantum state vector in phase space and Gabor's windowed Fourier transform

    Full text link
    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\"odinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and further references adde

    Esbl/ampc-producing escherichia coli in wild boar: Epidemiology and risk factors

    Get PDF
    The complex health problem of antimicrobial resistance (AMR) involves many host species, numerous bacteria and several routes of transmission. Extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing Escherichia coli are among the most important strains. Moreover, wildlife hosts are of interest as they are likely antibiotics free and are assumed as environmental indicators of AMR contamination. Particularly, wild boar (Sus scrofa) deserves attention because of its increased population densities, with consequent health risks at the wildlife–domestic–human interface, and the limited data available on AMR. Here, 1504 wild boar fecal samples were microbiologically and molecularly analyzed to investigate ESBL/AmpC-producing E. coli and, through generalized linear models, the effects of host-related factors and of human population density on their spread. A prevalence of 15.96% of ESBL/AmpC-producing E. coli, supported by blaCTX-M (12.3%), blaTEM (6.98%), blaCMY (0.86%) and blaSHV (0.47%) gene detection, emerged. Young animals were more colonized by ESBL/AmpC strains than older subjects, as observed in domestic animals. Increased human population density leads to increased blaTEM prevalence in wild boar, suggesting that spatial overlap may favor this transmission. Our results show a high level of AMR contamination in the study area that should be further investigated. However, a role of wild boar as a maintenance host of AMR strains emerged

    Efficient Operation of Modular Grid-Connected Battery Inverters for RES Integration

    Get PDF
    Grid-connected battery storage systems on megawatt-scale play an important role for the integration of renewable energies into electricity markets and grids. In reality, these systems consist of several batteries and inverters, which have a lower energy conversion efficiency in partial load operation. In renewable energy sources (RES) applications, however, battery systems are often operated at low power. The modularity of grid-connected battery storage systems thus allows improving system efficiency during operation. This contribution aims at quantifying the effect of segmenting the system into multiple battery-inverter subsystems on reducing operating losses. The analysis is based on a mixed-integer linear program that determines the system operation by minimizing operating losses. The analysis shows that systems with high modularity can meet a given schedule with lower losses. Increasing modularity from one to 32 subsystems can reduce operating losses by almost 40%. As the number of subsystems increases, the benefit of higher efficiency decreases. The resulting state of charge (SOC) pattern of the batteries is similar for the investigated systems, while the average SOC value is higher in highly modular systems
    corecore